Showing posts with label eliminator. Show all posts
Showing posts with label eliminator. Show all posts

Wednesday, December 18, 2013

High Power Car Battary Eliminator

To operate car audio (or video) system from household 230V AC mains supply, you need a DC adaptor. DC adaptors available in the market are generally costly and supply an unregulated DC. To overcome these problems, an economical and reliable circuit of a high-power, regulated DC adaptor using reasonably low number of components is presented here.  Transformer X1 steps down 230V AC mains supply to around 30V AC, which is then rectified by a bridge rectifier comprising 5406 rectifier diodes D1 through D4. The rectified pulsating DC is smoothed by two 4700μF filter capacitors C1 and C2. The next part of the circuit is a seriestransistor regulator circuit realised using high-power transistor 2N3773 (T1).
High Power Car Battary Eliminator Circuit Daigram 
Fixed-base reference for the transistor is taken from the output pin of 3-pin regulator IC1 (LM 7806). The normal output of IC1 is raised to about 13.8 volts by suitably biasing its common terminal by components ZD1 and LED1. This simple arrangement provides good, stable voltcuit age reference at a low cost. LED1 also works as an output indicator.Finally, a crowbar-type protection circuit is added. If the output voltage exceeds 15V due to some reason such as component failure, the SCR fires because of the breakdown of zener ZD2. Once SCR fires, it presents a short-circuit across the unregulated DC supply, resulting in the blowing of fuse F1 instantly. This offers guaranteed protection to the equipment connected and to the circuit itself.
 High Power Car Battary Eliminator
This circuit can be assembled using a small general-purpose PCB. A goodquality heat-sink is required for transistor T1. Enclose the complete circuit in a readymade big adaptor cabinet as shown in the figure.

Source:  http://www.ecircuitslab.com/2011/09/high-power-car-battary-eliminator.html
Read More..

Friday, August 2, 2013

Vocal Eliminator Circuit Diagram

Otherwise properly mixed sounds often suffer from a predominant solo voice (which might, of course, be the intention). Ifsuch a voice needs to be suppressed, the present circuit will do the job admirably. The circuit is based on the fact that solo voices are invariably situated `at the center` of the stereo recordings that are to be mixed. Thus, voice levels in the left- and right-hand channels are about equal. Arithmetically, therefore, left minus right equals zero; that is, a mono signal without voice. 

 Vocal Eliminator Circuit Diagram
Vocal Eliminator Circuit Diagram

 There is, however, a problem: the sound levels of bass instruments, more particularly the double basses, are also just about the same in the two channels. On the one hand low-frequency sounds are virtu--ally nondirectional and on the other hand, the recording engineers purposely use these frequencies to give a balance between the two channels. However, the bass instruments can be recovered by adding those appearing in the left + right signal to the left-right signal. 

The whole procedure is easily followed in the circuit diagram. The incoming stereo signal is buffered by A1 and A2. The buffered signal is then fed to differential amplifier A3 and subsequently to summing amplifier A5. The latter is followed by a low-pass filter formed by A6. You can choose between a first-order and a second-order filter by respectively omitting or fitting C2. Listen to what sounds best. The low-frequency signal and the difference signal are applied to summing amplifier A4. 

The balance between the two is set by PI and P2 to individual taste. You have noticed that the circuit does not contain input or output capacitors. you wish, output capacitors can be added without detriment. However, adding input capacitors is not advisable, because the consequent phase shift would adversely affect the circuit operation.
Read More..